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The Physical Review B, in press

Classical Model of Laser-Stimulated Surface
Processes: Energy Absorption Profiles via the
Langevin Equation

Jui-teng Lin and Thomas F. Georget
Department of Chemistry, University of Rochester
Rochester, New York 14627, USA

A classical model system, consisting of a diatomic molecule

chemisorbed on a solid surface and subjected to infrared laser radia-

tion, is presented. A set of coupled equations of motion characterized

by the many-body effects of the surface atoms is reduced to the

Langevin equations of a two-body problem in transformed coordinates.

The surface-induced damping factor and frequency red-shift of the

pumped mode are introduced by using a Wigner-Weisskopf-type approxi-

mation. The asymmetric forms of the power absorption and the quan-

tized cross section due to the nonlinear effects of the anharmonicity

are shown. The energy absorption profiles (energy absorbed vs time),

which are universal for any ranges of laser intensity (i.e., as the

intensity changes the profile remains the same provided the time

scale is changed appropriately) are plotted for different sets of

the damping factor and the detuning. It is found that much longer

time scales (microsecond) are required for low-power excitations

than for the high-power cases. The advantage and difficulties of

the normal-mode method and the numerical method are discussed, and

a new set of coupled equations in the rotating frame are developed.

The energy absorption profiles generated by a numerical method of

a CO/Ni system are shown.



2

I. Introduction

The interaction of infrared radiation with species chemisorbed

on a solid surface has been extensively studied recently.1-13 In

our previous papers, the potential importance of laser-stimulated

surface phenomena in heterogeneous systems (migration, recombination,

desorption and rate processes) in chemical industry and material

science was pointed out. The possibility of controlling surface

phenomena by means of low-power radiation was presented by a simple

kinetic model combining the laser rate equation and the Langmuir

equation.8 Experimental evidence has suggested that laser-stimulated

surface processes (LSSP) may be characterized by selective excitations

and hence are nonthermal in nature. 1 The nature of LSSP (selective

vs nonselective) has been more recently studied by a theoretical model

where the level population dynamics of a multilevel system were quan-

titatively discussed. It was shown, in a quantum mechanical model,

that the time scales of LSSP in a heterogeneous system were much

longer than those of a gas phase system, due to the fact that the

associated laser-power of the former system was much lower than that

of the latter system.II '12 Furthermore, the selectivity of the pumped

mode, essentially characterized by the ratio of the pumping rate and

the energy relaxation rate, was analyzed in terms of a competition

between multiphoton and multiphonon processes. For high selectivity,

a long lifetime (i.e., a weak damping) of the excited pumped mode is

required.
12 ,13

Most of our previous models have been cast in a quantum mech-

anical framework, using a microscopic Hamiltonian which is based on

the quantizations of the normal modes.6-13 The associated reduced



3

masses, the coupling factors and the driving force of the quantum

Hamiltonian are transformed quantities defined in the normal coor-

dinates and hence are not explicitly expressed as the functions of

the original force and the atomic coordinates before the normal

transformation. Hence, some of the features of the original physical

system are not clearly displayed in quantum mechanical calculation.

We have thus undertaken a study of a model system based on a clas-

sical Lagrangian where the masses and the driving forces are defined

in terms of the real atomic coordinates. From a classical model we

may investigate more details of the physical picture of a real sys-

tem (e.g., how the active modes and the associated generalized force

may be generated and singled out from the bath modes), which may not

be readily available in a quantum formulation.

In the present paper, we shall present a classical model de-

scribed by a Lagrangian of a system consisting of admolecules chemi-

sorbed on a solid surface. The many-body problem due to the il.ter-

actions among the admolecules and the surface atoms will be reduced

to a two-body problem, and then the absorption cross section of

the system and the stored energies of the pumped modes will be com-

puted analytically. The nature of LSSP and the excitation time

scales, essentially characterized by the damping factor of the

pumped mode, will be discussed in light of numerical results based

on a set of classical equations of motion.

In Section II, a model system described by a classical

Lagrangian, including the anharmonicities of the admolecule and the

many-body couplings of both single phonons and multiphonons is pre-

sented. A set of transformed equations of motion containing some
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important physical features is discussed. In Section III, the

Langevin equation of a reduced two-body problem of single-phonon

processes is developed, where the many-body effects of the surface

atoms are replaced by a damping factor and frequency red-shift of

the pumped mode. We then obtain the power absorption and the as-

sociated cross section (in a quantization form) of the system by

solving the Langevin equation. The steady-state energies stored

in the pumped modes are computed.

The universal energy absorption profiles and the time scales

of LSSP for arbitrary laser-powers (10 W/cm2 - 1012 W/cm 2) are shown

in Section IV. The discussion on the normal-mode method and a set

of new coupled equations in the rotating frame, which enables us to

overcome some difficulties of the usual numerical methods, are pre-

sented in Section V. Finally, we close the paper in Section VI

with a summary and conclusion of the main features of LSSP.

II. Transformed Equations of Motion of a Many-Body System

We consider a model system (as shown in Fig. 1) with a

diatomic molecule (admolecule) chemisorbed on a solid surface and

subject to infrared laser radiation. The Lagrangian may be written

as:

-.. Z0 + E

4)f j

1I 2 .
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where mi , xi i (i-1,2,3,-**) are the mass, the displacement and

the frequency of the i-th atom, respectively, and the interaction

terms with coupling constants X,, and X(P ) (between the i-th and

J-th atoms) are referred to as the single-phonon (linear) coupling

and the p-phonon (nonlinear) coupling, respectively. Here the ad-

molecule is treated as an anharmonic oscillator (up to the quartic

terms) while the surface atoms are treated harmonically. The an-

harmonicities eli' £2i and the coupling constant X12 are related

to the derivatives of the potential energies and, e.g., for a Morse

potential

D- e,~a0 NZ2 3

we have ell = -a3De, 12 - 7a 4De/12, and X12 = 2a 2De Similarly,

the coupling constants Xij and XW are related to the pair potential

energy between the i-th and j-th atoms by

The second term in eq.(l) is the interaction energy between the

admolecule/surface system and the laser field,

where qi is the classical effective charge of the atoms, and 9i is

the angle between the linearly polarized electric field Ei (with

circular frequency w) and the coordinate vector for the optical

active mode(s) of the system.

The equations of motion associated with the general form of

the Lagrangian given in eq.(l), in principle, may be solved by

____________________________________________



the normal mode treatment or directly solved by computational method.

However, neither of the above methods is tractable due to the com-

plicated many-body effects of the surface atoms. For the purpose

of some. analytical results, we shall consider a less general La-

grangian, viz., there are no explicit interactions assumed among

the surface atoms and the interaction energy between the adatoms

is assumed to be proportional to the product of the displacement

from their equilibrium positions. 14 Under these assumptions and the

orthogonal transform

,f A'. ay

9 U'

- the Lagrangian of the model system becomes, in the transformed normal

mode coordinates Qi (i= 1,2,3,.--),

+ I

3 3 j-3

+ th 612 + fe n (7)
where the transformed frequencies are given by
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2 2 2-O-,,i " '= MAl,2 t -A12,,,.

the transformed masses by

M A(jM .e)

the transformed new anharmonicities by

, 2 N,,

and the transformed generalized forces by

The new coupling constants (note - these are surface-atom site-

dependent) are defined by

'12  (A_2____2)oA = 7,2 ( ,-x - ,
(A.4

?= Xq " +  A-" 'i ,,fox

in drvn A0 , (ora)

In deriving eqs. (7)-(10), we have neglected the high-order anharmonic
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terms (QT, n> 4) and considered the linear coupling terms between

01 and Q2 while keeping the high-order couplings among the adatoms

and the surface atoms. Moreover, the couplings among the surface

atoms (QiQj, i, j> 2), which give rise to an infinite number of

coupled equations of motion, are effectively absorbed into the site-

dependent coupling constants (Xlj X 2j) and the frequency dispersion

of the surface-phonon modes (will be characterized by the phonon

mode spectrum).

The corresponding equations of motion in the transformed

normal coordinates are
1 5

and by substituting from eq. (7),

+. 12'? . + Q.' [A~Q Q + 2 + (12.)

as I I M, dI +0

++_ [A Q+ + A, : -,, +, + +o

The above equations of motion describe an admolecule/surface system

with normal frequencies Q 1 2 and Q. subject to the generalized

forces f1 (t), f2 (t) and f. (t), respectively. The important features

of these transformed equations of motion are (see Fig. 2):

(1) the transformation [eq.(6)] eliminates linearly coupling between

the SI mode and the surface phonon modes [i.e., no X.Q. in eq.(12.a)];

(2) the nl mode strongly coupled to the 0 2 mode (via the AQ2 term),

is almost singled out of the low frequencies surface phonon modes,

since there is no single-phonon coupling in eq.(-2.a) and the p-

phonon couplings [via XfP)QP] are much weaker processes (based on
t c

the concept of the energy-gap law); 1 3 ' 1 6 (3) from the expressions of
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the generalized forces (eq. (9)] we note that the transformed
applied field fI'>f2, for the case of XljA 2j and q2z-ql , suggests

t .at the i mode of the admolecule (corresponding to an asynm.etric

mode - see eq.(?.a)] may be selectively excited without significantly

heating the whole system by means of a radiation field with frequency
12

W=Z1 " We also note for the situation of 2j>>Alj and q2Z-ql

that f2 may be comparable to f1 ' and hence either n21 or £22 may be

optically active depending on the field frequency wzQ 1 or wZQ 2 .

III. Langevin Equation of Reduced Two-Body System

The difficulties of obtaining exact or analytical solutions

of the coupled equations (eq.(12)] are twofold: (1) the anharmonic

terms of the equations of motion, in general, will lead to time-

dependent nonlinear coefficients in the second order differential

equations; (2) the many-body effects of the surface phonon modes-,

characterized by the site-dependent coupling factors, j,

etc., will rule out any tractable results when the dimension of j is

large. In this section we shall use an iterative scheme to investi-

gate possible solutions of the coupled equations and in turn compute

the power absorption and stored energy of the system. We shall

first try to linearize the anharmonic terms and then treat the many-

body couplings by some physically reasonable approximations. As

mentioned in the previous section, the multiphonon couplings (char-

acterized by X are in general much weaker than that of the
3 3

single-phonon (characterized by the linear term X.Qj). This may be

realized by the fact that the p-phonon coupling constant k

(see eqs.(4) and (10)] is a strongly decreasing function of the

13multiphonon order p. We shall now examine the single-phonon processes
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and neglect the multiphonon terms for the purpose of a simple treat-

ment of the many-body effects.

By employing the asymptotic (or harmonic balance) method of
17

Bogoluikov, the nonlinear coupled equations of motion [eq.(12)

with no multiphonon couplings] may be linearized as follows1 8

+ A + , M(13A)

Q2 dl, f AQ, ZX.Q. +J3.f
-2

- )Q2.

We have introduced the effective frequencies S11 and Q 2 which are

approximately related to the anharmonicities (K*, K2 ) and thesteady-

state amplitudes of the modes (A1 , A2 ) by

2 2,2 Y~
where

124~ O/A.C29

In eq. (13.c), the field acting on the Q.-mode has been dropped since

the low-frequency surface phonon modes [Cj(9>i 3)<< w, which are far

off-resonant] are not infrared active. In eqs.(13.a) and (13.b), the
terms of (M-/M 2) 2 and (M-/)Q 1 are also neglected since M«Ph,,M2 for

lj < X2j and mlzm 2 (referred to eq.(8) .

We shall next use a technique, which enabled us to reduce

a multi-level system to a few-level system in our previous quantum

mechanical models, 11,12 to reduce the many-body classical problem

to a few-body problem. To establish the iterative scheme, let us

represent the zeroth-order, first-order homogeneous solutions of the

.- Oda
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coupled equations by Q(O) and Q(l), respectively, and choose the initial

conditions to be: Q1 (0)=A 0, Q2 (0) =B 0 , Q.(0) =A (j >, Q(0) = 0

(for all i). By eq. (13.b) we get

and using eq.(15) we find the homogeneous solution of eq.(13.c) as

t~e t

Decomposing Q()(t-t') by eq.(15) and its derivative, we have

2(l

Substituting eq.(17) into eq.(16) and working out the integrals by

approximating the upper limit from t to infinity, we obtain

(1)P (o)a 3 312MJ2 f-2d +

where j = -a, A= + n, and P denotes the principal part.whr j U 2 aj

In arriving at eq. (18), we have used the relation
1 9

I S~btitutng eq (18 int ±q (13.) an (sngth9W)nr
0

Substituting eq.(18) into eq. (13.b) and using the Wigner-

Weisskopf-type approximation,19 i.e., replacing the sum over the

phonon modes by the integral over the associated phonon mode density

of states p(2.), we find the first-order solution of eq.(13.b) to be

embodied by the Langevin equation:

where <..> denotes the ensemble average over the surface temperature,

i i i i , .
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and <fs > is the surface fluctuation force given by

<~=< A A cAt(&2jk) > (1

y and 6w, the damping factor and frequency shift, respectively, are

related to the coupling constant Il and the phonon density of states

p by
2

2 M3. M 7 S &2..
cj(2-2.4.)-

2S M ,~2~

The above classical results [eq.(22)] are in exact agreement with our

previous quantum mechanical results where the level broadening and

the level shift correspond to the damping factor and the frequency

shift, respectively.9 ,12  It is important to note that, in eq. (22.a),

both the coupling constant X,(F 2 ) and the phonon mode density P('2)

are evaluated at the frequency of the n 2 -mode which is coupled to the

surface phonon modes. For a Debye model spectrum p() 3n3/ D

with the cutoff frequency QD' we obtain

We also note that in eq.(20) the new frequency is red-shifted to the

lower frequency( 2 -652)sinice is a positive quantity for 2

(see eq.(23.b)]. For instance, the frequency of isolated CO,

a2 = 2145 cm-1 , may be red-shifted to 1932 cm-1 and 2069 cm-1 when it
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is chemisorbed on a nickel surface with on-top site and bridge site,
21respectively. 2

So far, we have reduced the many-body problem to a two-body

problem described by the equations of motion (13.a) and (20), where

the surface-induced damping factor and frequency shift of the Q2 -mode

are introduced through the Langevin equation. We shall now solve

the equations and compute the power absorption and the stored energy

of the pumped mode(s). For the case of low surface temperature

(i.e., ) <fs>z 0, the general solutions of the coupled equations

(13.a) and (20) are found to be in the form

Ai4-P*) (.24.)

where Ri are the roots of-the equation

X• tX K. --lb2+(*.tX r . z,1-1) - AIM M., = o 0 (5)

The general solutions are complicated due to their transient parts.

However, for a sufficient time, the transient solutions vanish, and

the motion of the modes follows the frequency of the field with the

steady-state solutions given by

= (26)< Q > A

where

)

A[D 'i 7
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2 M , M -AC M ,M ,

C M., , M--,--MA.

2

(2f 4e)
C'2

and the applied field coupling terms are (see eqs.(5) and (9)]

Combining eqs.(9) and (30) and the derivative of eq.(27), we obtain

the steady-state instantaneous power absorption (force times velocity)

of the total system (admolecule/surface) via the optically active

modes - A mode (with frequency i and B mode (with frequency 2 as

follows:
2

where

\\P4 V A An __Wd

Since the sin(2wt) term vanishes as a result of time averaging over

the period of the field, we immediately obtain the steady-state average

power absorption

_P8,)>=M2 W 'A/2*.
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The corresponding classical absorption cross section, defined by

[power absorption]/[laser intensity], is given by (in cgs units)

=h~ ?x- ( 3.
F _u (- -+ ( 4)-6)

Upon quantization this yields the quantum absorption cross section

for a transition between levels n and (n+l) of a quantum system 10'1
8

2

where A is the detuning A - - w and e! is the anharmonicity.

Note that the absorption cross section is not a symmetric Lorentzian

due to the nonlinear effect, 2e* (n+l/2), and the optimum detuning for

maximum absorption cross section is laser intensity dependent (see

Ref. 10 for more rigorous discussions).

Using the steady-state solutions [eq.(27)], we may easily

obtain the average stored energies (for steady-state) in the pumped A

and B modes, given by EA and EB, respectively, as follows:

-- . Cn + )(All- + XL).<,.'

For the case of A-_ 0 and w n2' the stored energies reduce to the

simple forms

TA= M, ,2 -

This is the situation of very weak coupling between the A and B modes

where the B mode is almost isolated from the A mode but coupled to
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the bath (surface phonon) modes via the damping factor y. We note

that for the weak damping case (i.e., the pumped B mode has a very

long lifetime), one may selectively excite the B mode without signi-

ficantly "heating" the other modes. A more quantitative description

of the dynamical nature of the selective and nonselective excitations

has been recently presented for a quantum mechanical system.
11 ,12

IV. Universal Energy Absorption Profiles

In the previous section, we have reduced the many-body

problem to a two-body problem where the many-body effects are re-

placed by including a damping factor and a frequency shift in the

Langevin equations. In the two-body problem, the general solutions

of the coupled equations of motion are still intractable due to the

non-explicit forms of the transient solutions [eq.(24)]. Instead of

evaluating the steady-state stored energies [eq.(34)], we shall now

investigate the time evolution of the energy absorption of the pumped

mode by further reducing the two-body problem to a single-body prob-

lem. For this purpose, we consider the situation where only the B

mode is resonantly pumped N= ?72) being weakly coupled to the A mode

(A<< j) but strongly coupled to the surface phonon modes (via the

damping factor y). The Langevin equation [eq. (20)], neglecting the

surface fluctuating force <fs>, becomes the equation of motion of a

damped anharmonic oscillator subject to a generalized force f2 (t) -

()) + rZQk>± . 2 (Q Jfl > V Cn.(45 (at 0s)

The complete solution of eq.(35) is found to be

=;w A44'L)- Ai c" (w±*)
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with the initial values A0  (4Q2 (0)>, B0 I[: 2 (0)>+T<Q2 (0)>/2]/w2, where

w r1.2 2 
07.10

"a (37 e)(3)

A- )/Z 07, C)

Z2 _n (37Aj" ,- ¢,J .(57.e)

The constants Aab and Ael are referred to as the absorptive and the

elastic amplitudes because the time-averaged power absorption is

entirely due to the out-of-phase displacement Aab sin(wt) (which

leads to an in-phase velocity with respect to the driving field

V2 cos (wt)]. The corresponding stored energy in the pumped B mode is

EBI- EB1 e - 2 e2

where E0 is the steady-state energy given by

e2 E
0 32M 4 'F7

Here we have introduced an effective electric field acting on the B

mode (see eq. (9)], for the classical effective charge e -ql--q2,

% ---. kF't'(O;L) -/ r Al E , (i (")C )

E + XI yi

and the optimum detuning A = - K (A + A w

intensity dependent (see eq.(14)].10 By using I(laser intensity) -

Eeff/(8O/C), the steady-state energy may be expressed in a conven-

tional form

______=__4____S___a
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where the units used are: E0 (eV), I(W/cm 2), M2 (amu), e(4.8xlO1 0 esu),

and both the detuning and damping factor are in the units of cm- 1.

For the case of y-0, we note that the solution of eq.(35) is

and the corresponding energy absorption of the pumped mode is

which is an oscillatory function since the available energy, for the

isolated B mode, will be necessarily transferred back and forth be-

tween the pumped mode and the laser field (via absorption and stimu-

lated emission, in "quantum mechanical" language). 22 Note that

eq.(42) reduces to EA(t) - (Me2 /CM 2 )It 2 which is proportiontal to t 2

for the exact resonance case.

The energy absorption given by eq.(38) is shown in Fig. 3

for different sets of the optimum detuning Aopt and the damping fac-

tor y. It is important to note that these energy absorption profiles

are universal for all ranges of the laser intensity__(I-10 W/cm2 -

1012 W/cm 2) when the associated time scales in units of Y7-1 are

chosen. From eqs. (38) and (40), we may define the time scales

(in units of y-1 ) by relating the laser intensities (I1 and 12) and

the damping factors (yl and y2) by

For instance, curve(D) in Fig. 3 describes the time dependence of the
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energy absorption of the pumped mode for the low power case 1 =10 2W/cm 2

with the time scale yl= 1.3x0 - 7, as well as for the high power
8 2case 12= 10 W/cm2 , but the time scale is reduced to (by eq.(43)]

2 - 7l x 10 it is seen from these universal energy absorption

profiles that the energies reach the steady-state values in the micro-

second time scale for the low power case (I- 102W/cm 2) while being

in the nanosecond region for the high power case (I- 108 W/cm 2) and

picosecond for I - 1012W/cm2 . This is one of the important features

of laser-stimulated surface processes, where low-power radiation

(I- 10-100W/cm2) may be 'used to study the adspecies/surface system

in a much longer time scale compared to that of a gas-phase system

(e.g., multiphoton dissociation of polyatomic molecules like SF6).
11 ,12

It should also be noted that for selective excitations by means of

low-power radiation to be possible, one requires not only a long

lifetime of the pumped mode (i.e., small damping factor) but also

a well-defined laser frequency such that the optimum detuning opt

and the damping factor y both have the small values like 10- 3 _ 10 - 4

-l
cm [see eq. (40)].

For a comparison of the energy absorption profiles given by

the reduced single-body Langevin equation [eq.(35)1tand those of a

set of coupled equations, we show in Fig. 4 the numerical results

obtained by solving the classical equations of motion are for a model

system of CO/Ni.23 We see that the energy absorption curve shown in

Fig. 4 is different from curve (D) in Fig. 3 by the fluctuation

(broadening) feature of the energy absorption. In the single-body

problem, we obtain only the average value of the fluctuating energy,

whereas by directly solving a many-body problem we may investigate
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in detail fast oscillations of the energy absorption profile caused

by the energy relaxation of the pumped mode and the feedback from

the surface. We also show the energy absorption profile for the

CO/Ni system with A opt=y=0 in Fig. 5. We see, except for the

fluctuating behavior, the resonance excitation curve of eq.(42)

E A(t) = It2 , as expected in the single-body problem.

V. Discussion

In this section we shall discuss some advantages and difficul-

ties of the normal-mode method and present a set of transformed

equations of motion (in the rotating-wave approach), which are more

practical in the classical trajectory calculations for the case of

low-power excitation processes where a very long- time scales are

involved.

A. Normal-Mode Method

Consider a Lagrangian in the general forms : (T- - / +F A) ,<+

where Tij, Fij and Vij are the kinetic energy, the dissipation func-

tion and the potential energy, respectively:

The corresponding equations of motion of this dissipative

system are given by2

--rlI. --M.'X'
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The normal-mode method capitalizes on the fact that each equation

of motion in eq.(46) in the normal coordinates involves only a

single coordinate and all the variables are completely separated.

However, the mass coefficient mij and the dissipation factor yij

are in general functions of the coordinate xi , and hence a set of

normal transforms which simultaneously diagonalizes Tij, Fij and

is not in general available. 15 For a physical system consisting

of N adatoms chemisorbed on a solid surface, there are 3N "frustrated"

surface normal modes so that the normal-mode method essentially

involves the diagonalization of a 3Nx 3N matrix, which is in general

not available particularly for the case where the mass coefficient

mij is coordinate-dependent and when N is a big number. For a

tractable model, we shall seek a method in which the dimension of

a related matrix may be significantly reduced. Consider the case

where the total system (subject to a laser field) may be decomposed

into two (or more) almost isolated subsystems, then each subsystem

involves the diagonalization of a small matrix which is possible by

a set of normal transform. Such subsystems may be, in principle,

physically possible when there is a big energy gap between them.lf
6

This decomposition may also be mathematically possible by a set of

partially orthogonal transforms, e.g., in Section I where we used

the transformed coordinates in eq.(6) to decompose the total system

into the a, mode and a subsystem (M2 mode plus bath modes) with the

al mode (or/and the Q2 mode) able to be selectively excited.

For a simple example, let us consider a system which is de-

composed into two subsystems, where subsystem-2 (with Z nor- 1 mot .s

referred to as the inactive bath modes) is weakly coupled to the
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subsystem-I (with 3N-Z normal modes referred to as the pumped

mode(s)), then the average power absorption of the system is given

by 2

where wA. is a normal frequency of the pumped subsystem with the

associated damping factor yi-and fi is a transformed generalized

forces related to the generalized force in the original coordinates

(for driving forces given by F. (t) = V. coswt) by

vo (48)

where Cij are the elements of the transformation matrix which simul-

tane-usly diagonalizes the kinetic energy, dissipation function and

potential energy of subsystem-i, but does not necessarily diagonalize

those of the subsystem-2.

B. Numerical Method in the Rotating Frame

Consider a model system consisting of adspecies (adatoms-i

and 2) chemisorbed on a solid surface and subject to an external

field [Vi sin(wt)], described by a set of coupled equations (for

only the nearest interactions are considered) as

7n2~X %I- +

where xi (i=1,2,3,--.) is the coordinate of the i-th atom for the

longitudinal motion, and the damping terms miYiXi are included to

take into account the lateral interactions between the atoms of one
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row with those of another. The damping factors yi (i=1,2) of the

adatoms [which may be expressed in the form of eq.(22.a)] simulate

the surface effects of the solid crystal, and the damping factors

y,(j)3) of the solid atoms simulate the effect of the bulk of the

lattice in presenting the free translational motion of the one-

dimensional linear chain. This is the significant difference of

eqs.(49)-(51) from that of the usual one-dimensional chain model,

where the latter loses all the many-body surface effects of the

adatoms and the many-body bulk effects of the solid atoms.

As discussed in Section IV, the time scales of the energy

absorption profiles (in units of y - 1 ) for the low-power excitations

(1- 10 2W/cm 2 ) are in the ranges of microseconds, which are much

longer than the oscillation cycle of the field (w - 10-14 second).

This causes the difficulty in obtaining the absorption profiles by

a computational method which solves the above coupled equations

directly. Furthermore, the energy absorption of the pumped mode
2

is very sensitive to the amount of detuning (A- w0 -w). For I ~ 10

20
W/cm 2 , we require that Aopt' Y = l0- 3 _ 10- 4 cm- which also causes

difficulty in tuning the field frequency to obtain optimum excitations.

Note that for the cases of high-power excitations (I> 108 W/cm 2 ),

these difficulties would not be encountered and hence we may obtain

the absorption profiles numerically from eqs.(49)-(51) [Figs. 4 and

52.

In order to overcome the difficulties described above- and

obtain the energy absorption profiles by a numerical method, par-

ticularly for the low-power excitation processes, we now present

a method which relies on the rotating wave approximation (RWA),

--.---
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a well-known technique for quantum mechanical systems. 19,22 By

using the rotating frame

where w0 is the frequency of the optically active mode of the ad-

species/surface system, we shall consider the near-resonant

excitation with the detuning A = w0-w- 0 (for the harmonic model)

or A = W0- K A 2 - wz 0 (for the anharmonic model - see eq.( 14)].

The coupled equations of motion (49)-(51) become

- i) t -2At +3

"" r (55)

where A = w 0- w is the detuning. In obtaining eqs.(53)-(55) we have

used the RWA, that is, we have neglected the fast oscillating terms

exp[±(w0 +)t]. The important features of the new equations of motion

are: (1) due to the complex coefficients, the j coupled equations

are in fact 2j real equations (equivalent to 4j first-order differ-

ential equations which must be numerically solved); (2) the time-

dependent field with the very fast sinusoidal function sin(wt) is

eliminated in the rotating frame in the RWA and the coupled equations

are characterized by the detuning A which leads to a much slower

oscillating function exp(-iAt) for near resonance.

Therefore, by using the new set of equations of motion, we

are able to compute the energy absorption by solving the coupled

equations numerically. It is important to note that the new coupled
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equations (53)-(55) may be solved by using, for example, the Runge-

Kutta method with a much longer time step ( 10-8 sec) than for the

original coupled equations (49)-(51) (Z 10- 16sec). The applications

of the new coupled equations on some real adspecies/surface system,

e.g., CO/Ni and H/Pt, are in progress.

VI. Summary of the Main Features of LSSP

We conclude the main feature of LSSP and summarize the

specific results obtained in this classical model as follows:

(a) By a set of orthogonal transforms, we are able to generate

two normal modes where the high frequency asymmetric (i) mode is

uncoupled to the bath mode while being coupled to the low frequency

sy etric (Q2) mode. From the transformed frequencies [eq.(8.a)1

and the generalized forces [eq.(9.a)], we are able to see some selec-

tive nature of the system.

(b) The nonlinear coupled equation due to the anharmonicities

of the potential energies may be linearlized by the asymptotic (or

harmonic balance) method where the amplitude-dependent frequencies

are presented in eq.(14).

(c) By the iterative procedure, the many-body effects of the

surface atoms are absorbed into the Langevin equation, where a

damping factor and frequency red-shift are introduced [eq.(22)].

These classical results are in agreement with those of the quantum

mechanical calculation presented in our earlier work, where the

Markovian statistics and Wigner-Weisskopf theory were used.
9 1 2

(d) The power absorption and the quantized cross section are

obtained by solving the coupled Langevin equations and the asymmetric

behavior is shown by the nonlinear effects of the anharmonicities
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(eqs.(32) and (33)].

(e) The energy absorption profiles of the pumped mode, which

are universal for any laser-power (ranging from 10W/cm2 to 1012 W/cm2 ),

are shown for different sets of the damping factor and the detuning

(Fig. 3]. The long time scales of LSSP (in the range of microseconds)

are discussed for the case of low-power excitations [eq.(43)].

(f) The average power absorption of a system, which may be

decomposed into almost isolated subsystems, is computed by the

normal-mode method [eq. (47)].

(g) Finally, the difficulties in numerical methods of solving

a set of coupled equations are pointed out, and a set of new coupled

equations, which enable one to numerically generate the energy

absorption curves of low-power LSSP, are presented in the rotating

frame [eqs.(53)-(55)H.
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Figure Captions

Fig.l. Diatomic molecule chemisorbed on a solid surface. The

coupling constants between the adatom-i and -2 and among the

adatoms and the surface atoms are given by A1 2 A1 j and

x2j, respectively.

Fig.2. Schematic diagram of the density of statesfor the transformed

normal frequencies all a2 and Qj given by eq.(8). The coupling

factors among different modes are denoted by A and Aj [given

by eq.(10)]. Note that the 121 mode is uncoupled to 9j modes

for the single-phonon processes.

Fig. 3. The universal energy absorption profiles of the pumped mode for

different sets of the optimum detuning &opt and the damping

-1 -3
factor y (in units of cm- ): curve A - Aopt=0, y-2xi0 - -

-4 -3
curve B - A =0 . 5 y = 5xi0-; curve C - Aopt=y=lO-;

opt
curve D - A opt2.5y=2.5x10 -4; curve E - Aopt =5y=2x10 - 5 ;

curve F -A1opt 8i0-5; curve G = Aopt_107=1-4; for low-

power laser 1=100W/cm2 . Note that the time scales are shown
-1

in units of y1.

Fig.4. Energy absorption of the pumped CO mode in the .CO/Ni system for

laser-power I=1012W/cm2 with A opt=0.2y20cm-1.

Fig.5. Energy absorption of the same system as in Fig.4, but with

AoptY Y= 0.
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